Documentation

Technical documentation and specifics 

Published Date: September 23, 2021

Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic–organic hybrid devices

Abstract: This study demonstrates enhancement of in-device electro-optic activity via a series of theory-inspired organic electro-optic (OEO) chromophores based on strong (diarylamino)phenyl electron donating moieties. These chromophores are tuned to minimize trade-offs between molecular hyperpolarizability and optical loss. Hyper-Rayleigh scattering (HRS) measurements demonstrate that these chromophores, herein described as BAH, show >2-fold improvement in β versus standard chromophores such as JRD1, and approach that of the recent BTP and BAY chromophore families. Electric field poled bulk devices of neat and binary BAH chromophores exhibited significantly enhanced EO coefficients (r33) and poling efficiencies (r33/Ep) compared with state-of-the-art chromophores such as JRD1. The neat BAH13 devices with charge blocking layers produced very large poling efficiencies of 11.6 ± 0.7 nm2 V−2 and maximum r33 value of 1100 ± 100 pm V−1 at 1310 nm on hafnium dioxide (HfO2). These results were comparable to that of our recently reported BAY1 but with much lower loss (extinction coefficient, k), and greatly exceeding that of other previously reported OEO compounds. 3 : 1 BAH-FD : BAH13 blends showed a poling efficiency of 6.7 ± 0.3 nm2 V−2 and an even greater reduction in k. 1 : 1 BAH-BB : BAH13 showed a higher poling efficiency of 8.4 ± 0.3 nm2 V−2, which is approximately a 2.5-fold enhancement in poling efficiency vs. JRD1. Neat BAH13 was evaluated in plasmonic–organic hybrid (POH) Mach–Zehnder modulators with a phase shifter length of 10 μm and slot widths of 80 and 105 nm. In-device BAH13 achieved a maximum r33 of 208 pm V−1 at 1550 nm, which is ∼1.7 times higher than JRD1 under equivalent conditions.

Citations:

  • Xu, H.; Elder, D.L.; Johnson, L.E.; Heni, H.; de Coene, Y; De Leo, E.; Destraz, M.; Meier, N.; Ghinst, W.V.; Hammond, S.R.; Clays, K.; Leuthold, J; Dalton, L.R.; and Robinson, B.H.. Materials Horizons. 2021, , . Doi: https://doi.org/10.1039/D1MH01206A

Published Date: September 20, 2021

Electro-Optic Activity in Excess of 1000 pm V−1 Achieved via Theory-Guided Organic Chromophore Design

Abstract: High performance organic electro-optic (OEO) materials enable ultrahigh bandwidth, small footprint, and extremely low drive voltage in silicon-organic hybrid and plasmonic-organic hybrid photonic devices. However, practical OEO materials under device-relevant conditions are generally limited to performance of ≈300 pm V−1 (10× the EO response of lithium niobate). By means of theory-guided design, a new series of OEO chromophores is demonstrated, based on strong bis(4-dialkylaminophenyl)phenylamino electron donating groups, capable of EO coefficients (r33) in excess of 1000 pm V−1. Density functional theory modeling and hyper-Rayleigh scattering measurements are performed and confirm the large improvement in hyperpolarizability due to the stronger donor. The EO performance of the exemplar chromophore in the series, BAY1, is evaluated neat and at various concentrations in polymer host and shows a nearly linear increase in r33 and poling efficiency (r33/Ep, Ep is poling field) with increasing chromophore concentration. 25 wt% BAY1/polymer composite shows a higher poling efficiency (3.9 ± 0.1 nm2 V−2) than state-of-the-art neat chromophores. Using a high-ε charge blocking layer with BAY1, a record-high r33 (1100 ± 100 pm V−1) and poling efficiency (17.8 ± 0.8 nm2 V−2) at 1310 nm are achieved. This is the first reported OEO material with electro-optic response larger than thin-film barium titanate.

Citations:

  • Xu, H.; Elder, D.L.; Johnson, L.E.; de Coene, Y.; Hammond, S.R.; Ghinst, W.V.; Clays, K.; Dalton, L.R.; and Robinson, B.H.. Advanced Materials. 2021, , . Doi: https://doi.org/10.1002/adma.202104174

Published Date: August 4, 2021

New paradigms in materials and devices for hybrid electro-optics and optical rectification

Abstract: We review recent transformative advances in materials design, synthesis, and processing as well as device engineering for the utilization of organic materials in hybrid electro-optic (EO) and optical rectification (OR) technologies relevant to telecommunications, sensing, and computing. End-to-end (from molecules to systems) modeling methods utilizing multi-scale computation and theory permit prediction of the performance of novel materials in nanoscale device architectures including those involving plasmonic phenomena and architectures in which interfacial effects play a dominant role. Both EO and OR phenomenon require acentric organization of constituent active molecules. The incumbent methodology for achieving such organization is electric field poling, where chromophore shape, dipole moment, and conformational flexibility play dominant roles. Optimized chromophore design and control of the poling process has already led to record-setting advances in electro-optic performance, e.g., voltage-length performance of < 50 volt-micrometer, bandwidths < 500 GHz, and energy efficiency < 70 attojoule/bit. They have also led to increased thermal stability, low insertion loss and high signal quality (BER and SFDR). However, the limits of poling in the smallest nanophotonic devices—in which extraordinary optical field densities can be achieved—has stimulated development of alternatives based on covalent coupling of modern high-performance chromophores into ordered nanostructures. Covalent coupling enables higher performance, greater scalability, and greater stability and is especially suited for the latest nanoscale architectures. Recent developments in materials also facilitate a new technology—transparent photodetection based on optical rectification. OR does not involve electronic excitation, as is the case with conventional photodiodes, and as such represents a novel detection mechanism with a greatly reduced noise floor. OR already dominates at THz frequencies and recent advances will enable superior performance at GHz frequencies as well.

Citations:

  • Johnson, L. E.; Elder, D. L.; Xu, H.; Hammond, S. R.; Benight, S. J.; O’Malley, K.; Robinson, B. H.; and Dalton, L. R.. Proc. SPIE 11812. 2021, Molecular and Nano Machines IV (1181202) , . Doi: https://doi.org/10.1117/12.2595638

Published Date: January 13, 2020

Ultrahigh Electro-Optic Coefficients, High Index of Refraction, and Long-Term Stability from Diels–Alder Cross-Linkable Binary Molecular Glasses

Abstract: The development of organic electro-optic (EO) materials that concurrently possess a high electro-optic coefficient (r33), high index of refraction, and long-term or high-temperature stability of chromophore alignment has been a crucial goal. To address this challenge, we developed a crosslinkable EO system consisting of two chromophores, HLD1 and HLD2, which can be electric field poled and then thermally crosslinked in situ to form a stable EO material. This approach avoids the necessity for nonlinear optically inactive materials such as polymers or small molecule cross-linkers, thus resulting in high chromophore density (>5 × 1020 molecules/cm3) and high index of refraction (n = 1.89 at 1310 nm) for HLD1/HLD2. Different ratios of HLD1 and HLD2 were evaluated to optimize poling efficiency and thermal stability of the poling-induced order. With 2:1 HLD1/HLD2 (wt/wt), a maximum r33 of 290 ± 30 pm/V was achieved in a cross-linked film. Thermal stability tests showed that after heating to 85 °C for 500 h, greater than 99% of the initial r33 value was maintained. This combination of large EO activity, high index of refraction, and long-term alignment stability is an important breakthrough in EO materials. HLD1/HLD2 can also be poled without the subsequent cross-linking step, and even larger maximum r33 (460 ± 30 pm/V) and n3r33 figure of merit (3100 ± 200 pm/V) were achieved. Hyperpolarizabilities of HLD and control molecules were analyzed by hyper-Rayleigh scattering and computational modeling with good agreement, and they help explain the high acentric order achieved during poling.

Citations:

Published Date: June 1, 2020

A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter

Abstract: To address the challenge of increasing data rates, next-generation optical communication networks will require the co-integration of electronics and photonics. Heterogeneous integration of these technologies has shown promise, but will eventually become bandwidth-limited. Faster monolithic approaches will therefore be needed, but monolithic approaches using complementary metal–oxide–semiconductor (CMOS) electronics and silicon photonics are typically limited by their underlying electronic or photonic technologies. Here, we report a monolithically integrated electro-optical transmitter that can achieve symbol rates beyond 100 GBd. Our approach combines advanced bipolar CMOS with silicon plasmonics, and addresses key challenges in monolithic integration through co-design of the electronic and plasmonic layers, including thermal design, packaging and a nonlinear organic electro-optic material. To illustrate the potential of our technology, we develop two modulator concepts—an ultra-compact plasmonic modulator and a silicon-plasmonic modulator with photonic routing—both directly processed onto the bipolar CMOS electronics.

Citations:

  • Koch, U.; Uhl, C.; Hettrich, H.; Fedoryshyn, Y.; Hoessbacher, C.; Heni, W.; Baeuerle, B.; Bitachon, B. I.; Josten, A.; Ayata, M.; Xu, H.; Elder, D. L.; Dalton, L. R.; Mentovich, E.; Bakopoulos, P.; Lischke, S.; Krüger, A.; Zimmermann, L.; Tsiokos, D.; Pleros, N.; Möller, M.; Leuthold, J.. Nature Electronics. 2020, 3, 338–345. Doi: https://doi.org/10.1038/s41928-020-0417-9

Published Date: June 20, 2014

Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling

Abstract: We measured the electro-optic (EO) coefficients (r33) of thin-film devices made from several monolithic, high number density organic EO chromophores with and without additional charge barrier layers. We found that a cross-linkable benzocyclobutene layer was very effective in suppressing unwanted, leakage current, keeping the effective poling voltage nearly identical to the applied voltage. This barrier layer proved to be superior to a titanium dioxide (TiO2) barrier layer. The suppression of the leakage current in combination with a new chromophore enabled the construction of EO devices that had r33 values in the range of 400–500 pm V−1 with poling fields ≥ 85 V μm−1.

Citations:

  • Jin, W.; Johnston, P. V.; Elder, D. L.; Tillack, A. F.; Olbricht, B. C.; Song, J.; Reid, P. J.; Xu, R.; Robinson, B. H.; Dalton, L. R.. Applied Physics Letters. 2014, 104, 243304. Doi: https://doi.org/10.1063/1.4884829

Published Date: March 18, 2016

Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores

Abstract: We have developed a series of novel monolithic materials based on molecules previously explored as dopants in guest–host systems to study intrinsic structure–function relationships in organic electro-optic (EO) materials. In a library of EO molecules with varied bridge segments, molecular modification of the donor with bis(tert-butyldiphenylsilyl) groups led to improvement in formation of amorphous films and led to enhanced poling efficiency. Further modification to include a carbazole site-isolation group on the bridge effectively reduced intermolecular dipole–dipole interactions, led to a material with poling efficiency of approximately 3 (nm V−1)2, and an increased glass transition temperature to 20–40 °C higher than similar reported monolithic materials. This level of thermal stability is comparable to common guest/host systems, which incorporated poly(methyl methacrylate) (PMMA) as the host. Our research showed that π-bridge length and type impacted first molecular hyperpolarizability β of a chromophore, which is accordingly reflected in the EO response. These findings further promote the utility of monolithic materials for their increased EO behavior and improved thermal stability, making this material system a competitor of guest–host systems in commercial applications.

Citations:

  • Jin, W.; Johnston, P. V.; Elder, D. L.; Manner, K. T.; Garrett, K. E.; Kaminsky, W.; Xu, R.; Robinson, B. H.; Dalton, L. R.. Journal of Materials Chemistry C. 2016, 4, 3119-3124. Doi: https://doi.org/10.1039/C6TC00358C

Published Date: June 7, 2018

Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator

Abstract: Efficient electro-optic (EO) modulators crucially rely on advanced materials that exhibit strong electro-optic activity and that can be integrated into high-speed and efficient phase shifter structures. In this paper, we demonstrate ultra-high in-device EO figures of merit of up to n3r33=2300  pm/V achieved in a silicon-organic hybrid (SOH) Mach–Zehnder modulator (MZM) using the EO chromophore JRD1. This is the highest material-related in-device EO figure of merit hitherto achieved in a high-speed modulator at any operating wavelength. The π-voltage of the 1.5-mm-long device amounts to 210 mV, leading to a voltage-length product of UπL=320  Vμm—the lowest value reported for MZM that are based on low-loss dielectric waveguides. The viability of the devices is demonstrated by generating high-quality on-off-keying signals at 40 Gbit/s with Q factors in excess of 8 at a drive voltage as low as 140  mVpp. We expect that efficient high-speed EO modulators will not only have a major impact in the field of optical communications, but will also open new avenues towards ultrafast photonic-electronic signal processing.

Citations:

  • Kieninger, C.; Kutuvantavida, Y.; Wolf, S.; Zwichel, H.; Blaicher, M.; Kemal, J.; Elder, D. L.; Lauermann, M.; Dalton, L. R.; Freude, W.; Randel, S.; Koos, C.. Optica. 2018, 5 (6) , 739-748. Doi: https://doi.org/10.1364/OPTICA.5.000739